关闭广告

高效训练新标杆!华人开源原生VLM-NEO,以少数据追平顶级模型

DeepTech深科技614人阅读

当下主流的视觉语言模型(Vision-Language Models, VLM),通常都采用这样一种设计思路:将预训练的视觉编码器与大语言模型通过投影层拼接起来。这种模块化架构成就了当前 VLM 的辉煌,但也带来了一系列新的问题——多阶段训练复杂、组件间语义对齐成本高,不同模块的扩展规律难以协调。

由南洋理工大学 S-Lab 助理教授刘子纬领导的联合团队最近提出了 NEO,试图用另一种思路解决这些问题。这项工作试图回答一个根本性问题:如果不依赖预训练的视觉编码器,能否构建出与顶级模块化 VLM 相媲美的原生统一架构?


图丨相关论文(来源:arXiv)

在传统方法中,视觉编码器通常基于 CLIP 或 SigLIP 等预训练模型,这些编码器虽然在视觉理解上表现出色,但其固有的语义偏置会限制模型在特定任务上的灵活性。

更重要的是,视觉编码器和语言模型之间存在天然的“代沟”——前者采用双向注意力机制来捕捉图像中的全局关系,后者则使用因果注意力进行文本的自回归生成。这种架构上的不匹配使得多阶段训练不仅复杂,还需要大量的对齐数据来弥合两个模态之间的鸿沟。

原生 VLM 的探索并非由 NEO 首创。早期的 Fuyu、EVE 就开启了这条路,但它们所面临的一个重要问题是:如何在语言模型内部高效构建视觉表征?这个过程往往效率低下、训练不稳定,甚至会破坏原有的语言能力。后续研究尝试用知识蒸馏、混合训练数据或专家系统来缓解,但始终未能触及核心问题。NEO 的团队认为,问题的根源在于没有从根本上为多模态重新设计模型的基础组件。

NEO 团队的方案是构建一个统一的原生基元(Native VLM Primitive),这个基元同时具备视觉编码、跨模态对齐和多模态推理的能力。具体而言,NEO 引入了三项关键创新:多头原生注意力(Multi-Head Native Attention, MHNA)、原生旋转位置编码(Native Rotary Position Embeddings, Native-RoPE)以及 Pre-Buffer 和 Post-LLM 的两阶段架构设计。


图丨原生视觉-语言框架概览(来源:arXiv)

在注意力机制的设计上,NEO 采用了一种混合策略。对于图像 token,模型使用双向注意力,允许每个视觉 token 与图像中的所有其他 token 进行交互,这保留了视觉编码器捕捉全局空间关系的能力。而对于文本 token,则沿用传统的因果注意力,确保自回归生成的有效性。这种“帧级双向、词级因果”的混合注意力机制,让 NEO 能够在同一个统一架构中同时处理视觉的全局理解和语言的序列生成。

位置编码是 NEO 的另一个创新点。传统 VLM 在处理图像和文本时,往往简单地将预训练 LLM 的一维旋转位置编码(Rotary Position Embeddings, RoPE)扩展到二维或三维空间,但这种做法会破坏 LLM 原有的建模模式,损害其语言能力。NEO 采用的 Native-RoPE 则完全解耦了时间(T)、高度(H)和宽度(W)三个维度的索引和频率分配。


图丨NEO 框架(来源:arXiv)

对于文本,模型保持原有的时间维度索引,而将高度和宽度维度的索引置零;对于图像,每个视觉 token 拥有固定的时间索引和独特的空间坐标。这种设计不仅保持了与预训练 LLM 的兼容性,还能更好地捕捉图像中的局部语义依赖关系。

在训练策略上,NEO 采用了 Pre-Buffer 和 Post-LLM 的分离式预训练。Pre-Buffer 负责从头学习视觉感知,而 Post-LLM 则继承预训练 LLM 的强大语言能力和推理能力。在预训练阶段,Post-LLM 的参数被冻结,仅训练 Pre-Buffer 和新增的 Query-Key 头维度及归一化层。

这种设计既保护了 LLM 的语言知识不被低质量的图像-文本对破坏,又允许 Pre-Buffer 在大规模视觉数据上进行充分的学习。到了中期训练和监督微调阶段,Pre-Buffer 和 Post-LLM 被合并为一个统一的单体架构,模型能够自主地在编码、对齐和推理之间分配计算资源。

此外,Pre-Buffer 本身具有可复用性。这个经过大规模视觉数据预训练的模块可以作为开源资源,帮助后续研究者以更低的成本将新的 LLM 适配为 VLM。

值得注意的是,NEO 在训练效率上展现出令人惊讶的表现。整个预训练阶段仅使用了 3.45 亿图文对,这个数据规模远小于主流模块化 VLM 动辄数十亿的训练数据。在中期训练阶段,NEO 使用 4000 万样本进行视觉-语言对齐的强化;监督微调阶段则使用约 400 万条高质量指令数据。总计不到 4 亿的训练样本,NEO-2.2B 和 NEO-9B 两个版本就达到了与顶级模块化 VLM 相当的性能水平。


图丨与其他模块化和原生 VLM 的基准测试比较(来源:arXiv)

在多项标准评估基准上,NEO 的表现出色。在 MMMU(多学科多模态理解与推理)测试中,NEO-2.2B 获得了 48.6 分,超过了 InternVL2.5(43.6 分)和 HoVLE(32.2 分)等原生 VLM 竞品。

在文档理解任务如 AI2D 和 DocVQA 上,NEO-2.2B 分别达到 80.1 分和 89.9 分,接近甚至超过了一些采用强化学习的模块化模型。更大的 NEO-9B 版本在多个基准上的表现更加出色,在 MMBench 上获得 82.1 分,在 AI2D 上达到 83.1 分,与使用数十亿训练数据的 Qwen2-VL 和 InternVL2.5 处于同一竞争梯队。

当然,NEO 也还存在一些局限性。在知识密集型和 OCR(光学字符识别)重度任务上,如 MMMU、InfoVQA 和 TextVQA 等测试中,NEO 的表现相对落后。NEO-9B 在某些 OCR 任务如 DocVQA 和 InfoVQA 上的表现甚至不如 NEO-2.2B,这表明当前的训练语料库在这些特定领域可能存在不足。

研究团队在论文中表示,这些局限性主要源于训练数据的规模和质量限制,而非架构本身的问题。如果能够获得更大规模、更高质量的训练数据,NEO 的潜力还有很大的提升空间。

参考资料:

1.https://arxiv.org/pdf/2510.14979v1

2.https://github.com/EvolvingLMMs-Lab/NEO

运营/排版:何晨龙

版权与免责声明:本文内容转载自其他媒体,目的在于传递更多信息,不代表本网观点或立场,不承担此类作品侵权行为的自己责任及连带责任。
猜你喜欢
精彩推荐

50+女人听我一句劝,别穿大红大紫和超短裙,才能优雅到老

静儿时尚达人 浏览 568

美军在加勒比地区袭击船只致6人死亡 包括两名特多公民

环球网资讯 浏览 787

美股周一:纳指和标普500均创14个月来新高,Rivian涨超17%

网易科技频道 浏览 13375

乌军新一轮大规模反攻打响:最快1到3周达成目标

红星新闻 浏览 104970

偷鸡不成蚀把米!白百何疑开撕王传君,自己却先被骂了个底朝天

娱乐圈笔娱君 浏览 455

前央视主持人水均益直播 额头顶"中国人"纸条否认移民

极目新闻 浏览 2783

招银理财“不赚不收费”连锁效应:公募固定管理费模式困局待解

经济观察报 浏览 14252

印尼,凭什么?

虎嗅APP 浏览 11353

美紧盯“中俄舰队在阿拉斯加附近巡航”派舰跟踪

环球网资讯 浏览 11995

保时捷将在中国设立研发中心 2022年初落户上海

新京报贝壳财经 浏览 15351

麒麟信安与智慧眼达成战略合作 共推AI+操作系统融合应用

财闻 浏览 802

限时19.68万元起 比亚迪2026款夏上市

网易汽车 浏览 466

美无人机出现在委内瑞拉近海

北青网-北京青年报 浏览 76

鲁媒:洛佩斯需证明自己,否则很可能不在泰山队未来计划中

懂球帝 浏览 771

52岁郭德纲也没想到 徒弟阎鹤祥给他争光了

乡野小珥 浏览 243

特斯拉撞树后打不开车门 5人被困燃烧的车内身亡

每日经济新闻 浏览 443

蒋勤勤获亚洲电影大奖最佳女主角

电和影 浏览 11137

充电十分钟、续航2000公里!宁德时代宣布:2027年量产全固态电池

优视汽车 浏览 190

29岁女白领荒野求生半月瘦成"闪电":睡觉时放一把刀

都市快报橙柿互动 浏览 2622

英伟达称黄仁勋已返回美国 此前被传本周访问中国大陆

经济观察报 浏览 14596

陈运拿下华锋股份意欲何为

北京商报 浏览 286
本站所有信息收集于互联网,如本站收集信息侵权,请联系我们及时删除
Copyright © 2020-2022,版权所有 qukanredian.com
沪ICP备20002587号-1